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Optimal Joint Measurements of Position and
Momentum

D. M. Appleby1

Received July 2, 1998

The distribution of measured values for maximally accurate, unbiased
simultaneous measurements of position and momentum is investigated. It is
shown, that if the measurement is retrodictively optimal, then the distribution of
results is given by the initial state Husimi function (or Q-representation) . If the
measurement is predictively optimal, then the distribution of results is related to
the final state anti-Husimi function (or P-representation ). The significance of this
universal property for the interpretation of the Husimi function is discussed.

1. INTRODUCTION

There is currently some interest in simultaneous measurements of posi-

tion and momentum (Arthurs and Kelly, 1965; WoÂdkiewicz, 1984, 1986,
1987; Braunstein et al., 1991; Stenholm, 1992; Halliwell, 1992; Burak and

WoÂdkiewicz, 1992; Leonhardt and Paul, 1993, 1995; ToÈ rma et al., 1995;

Englert and WoÂdkiewicz, 1995; Busch et al., 1995; Power et al., 1997;

Banaszek and WoÂdkiewicz, 1997; Ban, 1997; Leonhardt, 1997). Measure-

ments of this kind have an immediate, technical relevance to the field of

quantum optics. They also have a rather more general, conceptual relevance
to the problem of understanding the classical limit.

In Appleby (1998a ±c) we discussed the accuracy of such measurements.

We began with Braginsky and Khalili’ s (1992) analysis of single measure-

ments of x only, and extended it to the case of simultaneous measurements

of x and p together. We identified two types of error: the retrodictive (or

determinative) errors D eix, D eip, and the predictive (or preparative) errors
D efx, D efp. We showed that, subject to some rather unrestrictive assumptions
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regarding the nature of the measurement process, they satisfy the retrodictive

error relationship

D eix D eip $
"
2

and the predictive error relationship

D efx D efp $
"
2

In the following we address the question: What (if anything) can be said

about the distribution of measured values in those cases where the lower

bound set by one of these inequalities is actually achieved?

We begin, in Section 2, by considering measurements which are retrodic-

tively optimal. We define a retrodictively optimal measurement to be any
measurement belonging to the class of processes defined in Appleby (1998c)

which minimizes the product of retrodictive errors (so that D eix D eip 5 " /2),

and which is retrodictively unbiased [so that the systematic errors of retrodic-

tion are zeroÐ see Eq. (1) below]. We show that for such measurements the

distribution of measured values is always given by the initial-system-state
Husimi function, or Q-function (Husimi, 1940; Hillery et al., 1984; Lee,

1995; Leonhardt, 1997).

A number of related results have been obtained by other authors. In the

case of the Arthurs±Kelly process several authors (Arthurs and Kelly, 1965;

Braunstein et al., 1991; Stenholm, 1992; Leonhardt, 1997) have shown that

the Husimi function describes the distribution of measured values for certain
choices of initial apparatus state. Leonhardt and Paul (1993, 1995) have

shown that the same is true for a number of other processes. However, none

of these authors relate the distribution of measured values to the accuracy

of the measurement process.

Busch (1985) and Appleby (1998b) have analyzed the Arthurs±Kelly

process in terms of the accuracy of the measured values, and have shown
that the Husimi function gives the distribution of results in precisely those

cases where the measurement is retrodictively ª optimalº or ª best.º

WoÂdkiewicz has proposed an ª operationalº approach to the theory of

phase space distributions (WoÂdkiewicz, 1984, 1986, 1987; Burak and WoÂdkie-

wicz, 1992; Englert and WoÂdkiewicz, 1995; Banaszek and WoÂdkiewicz, 1997;

Ban, 1997; Marchiolli et al., 1997). If one takes the filter reference state (or
ª quantum rulerº ) used to define the operational distribution to be a squeezed

vacuum state, and a minimum uncertainty state for xÃand pÃ, then one obtains

the Husimi function. It could be said that the Husimi function is the operational

distribution corresponding to the case when the quantum ruler is most exactly
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and finely calibratedÐ a fact which obviously ties in with the result which

we will prove in Section 2.

However, the result which is most similar to ours is the one obtained
by Ali and PrugovecÏ ki (1977), working within the framework of the approach

based on POVMs (positive operator-valued measures) and unsharp observ-

ables (PrugovecÏ ki, 1976a, b, 1978, 1984; Holevo, 1982; Busch, 1985; Busch

et al., 1995; Ban, 1997). Ali and PrugovecÏ ki prove a general theorem. How-

ever, it is considerably less general than the theorem which we will prove

in Section 2. In the first place, the definition of the experimental accuracy
which is employed by Ali and PrugovecÏ ki is only valid for a limited class

of measurement processes, as is shown in the appendix to Appleby (1998b).

The validity of their result is further restricted by the fact that they only

prove it for processes which are Galilean covariant. In Section 2 we prove

the proposition under assumptions which are much less restrictive (in fact,

it turns out that a retrodictively optimal measurement process always is
Galilean covariant; however, that is a consequence of our argumentÐ we do

not begin by assuming it). It may also be worth remarking that our way of

analyzing simultaneous measurement processes is rather different from the

approach of Ali and PrugovecÏ ki. In particular, the objections raised by Uffink

(1994) do not apply to our arguments.
In Section 3 we go on to consider predictively optimal measurementsÐ

i.e., measurements of the type defined in Appleby (1998c) which minimize

the product of predictive errors (so that D efx D efp 5 " /2). We show that in

the case of such a measurement the distribution of results is related to the

final-state anti-Husimi function, or P-function (Glauber, 1963; Sudarshan,

1963; Hillery et al., 1984; Lee, 1995; Leonhardt, 1997). This result extends
a result proved in Appleby (1998b) for the particular case of the Arthurs±Kelly

process to the general class of measurement processes defined in Appleby

(1998c).

In Section 4 we conclude by discussing the bearing of our results on

the interpretation of the Husimi function. In Section 2 we show that the

Husimi function describes the outcome of any retrodictively optimal process.
In other words, the Husimi function has a universal significance. We will

argue that this lends some support to the idea that the Husimi function is the

quantum mechanical entity which most nearly resembles the classical concept

of the ª realº or ª objectiveº distribution describing an ensemble of identically

prepared systems.

2. RETRODICTIVELY OPTIMAL MEASUREMENTS

We will say that a simultaneous measurement process of the kind defined

in Appleby (1998c) is retrodictively optimal if the following hold:
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1. The process is retrodictively unbiased, so that

^ c ^ f ap | e ÃXi | c ^ f ap & 5 ^ c ^ f ap | e ÃPi | c ^ f ap & 5 0 (1)

for all | c & P *sy.

2. The product of retrodictive errors achieves its lower bound, so that

D eix D eip 5
"
2

(2)

Here and in the sequel we employ the notation and terminology of Appleby

(1998c). Thus, | c & P *sy and | f ap & P *ap are the initial states of the system

and apparatus, respectively. e ÃXi, e ÃPi are the retrodictive error operators. D eix,
D eip are the maximal rms errors of retrodiction.

In Appleby (1998b) we considered the special case of the Arthurs±Kelly

process. In that case one has the commutation relation

[ e ÃXi, e ÃPi] 5 2 i " (3)

This relationship, and the condition of Eq. (2), together imply Eq. (1). In the

general case, however, it is necessary to impose as a separate condition the

requirement that the measurement be retrodictively unbiased.

In the general case the commutation relationship of Eq. (3) cannot be

assumed. However, it was shown in Appleby (1998c) that Eq. (1) implies
the weaker statement

^ c ^ f ap | [ e ÃXi, e ÃPi] | c ^ f ap & 5 2 i " (4)

for every normalized | c & P *sy (but fixed | f ap & ). It turns out that this is

enough to prove that the distribution of measured values is given by the

initial system state Husimi function for any retrodictively optimal process.
However, the fact that we can no longer assume the commutation relationship

of Eq. (3) means that the proof of this statement is less straightforward than

the proof given in Appleby (1998b) for the special case of the Arthurs±

Kelly process.

In view of Eqs. (2) and (4) we have

^ c ^ f ap | e Ã2Xi | c ^ f ap & ^ c ^ f ap | e Ã2Pi | c ^ f ap & 5
" 2

4
(5)

for every normalized | c & P *sy. We deduce:

Lemma 1. Given any retrodictively optimal measurement process with

initial apparatus state | f ap & , there exists a fixed number l i such that
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^ c ^ f ap | e Ã2Xi | c ^ f ap & 5
l 2

i

2

^ c ^ f ap | e Ã2Pi | c ^ f ap & 5
" 2

2 l 2
i

for every normalized | c & P *sy.

Remark. We will refer to l i as the retrodictive spatial resolution of

the measurement.

Proof. For each normalized | c & P *sy define the number l c by

l c 5 (2 ^ c ^ f ap | e Ã2Xi | c ^ f ap & )1/2

In view of Eq. (5) we then have

( ^ c ^ f ap | e Ã2Pi | c ^ f ap & )1/2 5
"

! 2 l c

We have from the definitions of D eix, D eip (Appleby, 1998c)

D eix 5 sup
| c & P 6

( ^ c ^ f ap | e Ã2Xi | c ^ f ap & )1/2 5
sup | c & P 6( l c )

! 2

and

D eip 5 sup
| c & P 6

( ^ c ^ f ap | e Ã2Pi | c ^ f ap & )1/2 5
"

! 2inf | c & P 6 ( l c )

where 6 denotes the unit sphere in the system state space. In view of Eq.
(2) it then follows that

inf
| c & P 6

( l c ) 5 sup
| c & P 6

( l c )

which means that l c must be constant. n

We next define the operators

cÃl i 5
1

! 2 1 1

l i

e ÃXi 2
i l i

"
e ÃPi 2

(6)

cÃ²l i 5
1

! 2 1 1

l i

e ÃXi 1
i l i

"
e ÃPi 2

In the general case we cannot assume the commutation relation of Eq. (3).

It follows that cÃl i, cÃ²l i are not, in general, ladder operators. We do, however,

have the relationship of Eq. (4), and this is enough to prove the following.
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Lemma 2. Given any retrodictively optimal measurement process with

initial apparatus state | f ap & and retrodictive spatial resolution l i, let cÃl i be

the operator defined by Eq. (6). Then

cÃl i | c ^ f ap & 5 0

for every | c & P *sy.

Proof. Given any normalized system state | c & , let a , b P R be the real

and imaginary parts of ^ c ^ f ap | e ÃXi e ÃPi | c ^ f ap & :

^ c ^ f ap | e ÃXi e ÃPi | c ^ f ap & 5 a 1 i b (7)

We have

( a 2 1 b 2)1/2 5 | ^ c ^ f ap | e ÃXi e ÃPi | c ^ f ap & |

# | e ÃXi | c ^ f ap & | ? | e ÃPi | c ^ f ap & | 5
"
2

where

| e ÃXi | c ^ f ap & | 5 1 ^ c ^ f ap | e Ã2Xi | c ^ f ap & 2
1/2

5
l i

! 2

| e ÃPi | c ^ f ap & | 5 1 ^ c ^ f ap | e Ã2Pi | c ^ f ap & 2
1/2

5
"

! 2 l i

are the norms of the vectors e ÃXi | c ^ f ap & , e ÃPi | c ^ f ap & .
In view of Eq. (4) we also have

2 i " 5 ^ c ^ f ap | [ e ÃXi, e ÃPi] | c ^ f ap & 5 2i b

Consequently, a 5 0 and b 5 2 " /2. We then have

| ^ c ^ f ap | e ÃXi e ÃPi | c ^ f ap & | 5
"
2

5 | e ÃXi | c ^ f ap & | ? | e ÃPi | c ^ f ap & |

Now it is generally true in any Hilbert space, that two vectors | C 1 & , | C 2 &
having the property

| ^ C 1 | C 2 & | 5 | | C 1 & | ? | | C 2 & |

must be parallel. Hence

e ÃPi | c ^ f ap & 5 g e ÃXi | c ^ f ap &
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for some g P C . Inserting this result into Eq. (7), we find

g 5 2
i "
l 2

i

The claim follows. n

Now let

r ( m Xf, m Pf) 5 # dxf dyf1 . . . dyfn | ^ xf, m Xf, m Pf, yf1, . . . , yfn | c ^ c ap | 2 (8)

be the probability distribution for the final pointer positions. In this expression

| xf, m Xf, m Pf, yf1, . . . , yfn & is the simultaneous eigenvector of the Heisenberg-

picture operators xÃf, m ÃXf, m ÃPf, yÃfj, with eigenvalues xf, m Xf, m Pf, yfj. We continue

to employ the notation and terminology of Appleby (1998c). Thus, xÃf is the

final system position operator, m ÃXf and m ÃPf are the final pointer position
operators, and the m Ãfj represent the additional, internal degrees of freedom

characterizing the apparatus.

Let | (x, p) l i & P *sy be the coherent state with wave function

^ x8 | (x, p) l i & 5 1 1

p l 2
i 2

1/4

exp F 2
1

2 l 2
i

(x8 2 x)2 1
i

"
px8 2

i

2 "
px G (9)

and let

Q l i(x, p) 5
1

h
| ^ (x, p) l i | c & | 2 (10)

be the initial system state Husimi function (Husimi, 1940; Hillery et al.,
1984; Lee, 1995; Leonhardt, 1997). We want to show

r ( m Xf, m Pf) 5 Q l i( m Xf, m Pf)

for almost all m Xf, m Pf whenever the measurement is retrodictively optimal at

spatial resolution l i (ª almost allº being defined relative to ordinary Lebesgue

measure on the plane). Our strategy will be to begin by showing that the
two functions have the same moments:

# d m Xfd m Pf m n
Xf m m

Pf r ( m Xf, m Pf) 5 # d m Xfd m Pf m n
Xf m m

Pf Q l i( m Xf, m Pf)

for every pair of nonnegative integers n, m. Unfortunately, we then face the

difficulty that although r and Q l i are always defined, whatever the initial

state of the system, the same is not true of their moments. This is because

xÃi, pÃi, m ÃXf, m ÃPf are unbounded operators. The way in which we will circumvent
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the difficulty is, first, to prove the result on the assumption that | c & is in an

appropriately chosen dense subspace of *sy, and then to use a continuity

argument to extend it to the case of arbitrary | c & .
Let aÃl i, aÃ²l i, be the ladder operators

aÃl i 5
1

! 2 1 1

l i

xÃi 1
l i

"
pÃi 2

(11)

aÃ²l i 5
1

! 2 1 1

l i

xÃi 2
l i

"
pÃi 2

and define number states | n & l i P *sy in the usual way, by the requirements

aÃl i | 0 & l i 5 0, l i ^ 0 | 0 & l i 5 1, | n & l i 5
1

! n!
aÃ² n

l i | 0 & l i

(with a slight abuse of notation we sometimes regard the operators xÃi and pÃi
as acting on *sy, and sometimes as acting on *sy ^ *ap). We then define

^ l i to be the dense subspace of *sy consisting of all finite linear combinations

of the vectors | n & l i.
It is easily seen that ^ l i is in the domain of definition of every polynomial

f(xÃi, pÃi). In particular, the integral

# dx dp xnpmQ l i(x, p)

is defined and finite for all n, m whenever Q l i is the Husimi function corres-

ponding to a state in ^ l i.

Now define the operators

bÃl i 5
1

! 2 1 1

l i

m ÃXf 1
i l i

"
m ÃPf 2

bÃ²l i 5
1

! 2 1 1

l i

m ÃXf 2
i l i

"
m ÃPf 2

These operators commute, and so they are certainly not ladder operators.

We have

bÃ²l i 5 aÃ²l i 1 cÃl i (12)

where cÃl i and aÃ²l i are the operators defined in Eqs. (6) and (11), respectively.

Let | c & be any vector P ^ l i. Then | c ^ f ap & is in the domain of aÃ²l i. It is

also in the domain of cÃl i (the definition of a retrodictively optimal process

tacitly assumes that | c ^ f ap & is in the domain of e ÃXi, e ÃPi, and therefore in
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the domain of cÃl i, for all | c & ). It is consequently in the domain of bÃ²l i. Moreover,

in view of Lemma 2,

bÃ²l i | c ^ f ap & 5 (aÃ²l i | c & ) ^ | f ap &

where aÃ²l i | c & also P ^ l i. Iterating the argument we conclude that | c ^ f ap &
is in the domain of bÃ²l i

n and

bÃ² n
l i | c ^ f ap & 5 (aÃ² n

l i | c & ) ^ | f ap &

for every nonnegative integer n. Taking adjoints gives

^ c ^ f ap | bÃml i 5 ( ^ c | aÃml i) ^ ^ f ap |

for all m. Consequently,

^ c ^ f ap | bÃml ib
Ã² n
l i | c ^ f ap & 5 ^ c | aÃml ia

Ã² n
l i | c &

Now

^ c ^ f ap | bÃml ib
Ã² n
l i | c ^ f ap & 5 # d m Xf d m Pf zm

l i z*n
l i r ( m Xf, m Pf)

where r is the distribution of final pointer positions, as defined in Eq. (8),

and z l i is the complex coordinate

z l i 5
1

! 2 1 1

l i

m Xf 1
i l i

"
m Pf 2 (13)

Also (Hillery et al., 1984; Lee, 1995; Leonhardt, 1997)

^ c | aÃml ia
Ã² n
l i | c & 5 # d m Xf d m Pf zm

l iz*
n

l i Q l i, ( m Xf, m Pf) (14)

where Q l i is the initial-system-state Husimi function, as defined in Eq.

(10). Therefore

# d m Xf d m Pf zm
l iz*

n
l i r ( m Xf, m Pf) 5 # d m Xf d m Pf zm

l iz*
n

l i Q l i( m Xf, m Pf)

for all n, m. It follows that

# d m Xf d m Pf f(z l i, z*l i) r ( m Xf, m Pf) 5 # d m Xf d m Pf f (z l i, z*l i) Q l i( m Xf, m Pf)
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for every polynomial f. In particular,

# d m Xf d m Pf m m
Xf m n

Pf r ( m Xf, m Pf)

5 # d m Xf d m Pf m m
Xfm n

Pf Q l i( m Xf, m Pf) (15)

for all m, n.

At this stage one needs to be careful. It is tempting to suppose that two

probability measures which have the same moments must be equal. In fact,
this inference is not always justified (see Reed and Simon, 1975, Vol. 2).

However, it is justified here, as we show in the Appendix. Consequently

r ( m Xf, m Pf) 5 Q l i( m Xf, m Pf) (16)

for almost all m Xf, m Pf whenever the initial system state | c & is in the space

^ l i.
It remains for us to show that the distributions are equal in the case of

arbitrary | c & P *sy. We will do this by using a continuity argument.

Choose a sequence | c n & P ^ l i converging to | c & . Let Q l i,n be the Husimi

function and r n the distribution of measured values corresponding to | c n & .
Let Q l i be the Husimi function and r the distribution of measured values

corresponding to | c & .
We have, as an immediate consequence of the definition, Eq. (10),

Q l i( m Xf, m Pf) 5 lim
n ® `

(Q l i,n( m Xf, m Pf)) (17)

for all m Xf, m Pf.

On the other hand, it is not generally true that r n converges pointwise

to r . It does, however, contain a subsequence which converges pointwise
almost everywhere. In fact, let +1 be the Banach space consisting of all

integrable functions on R 2 with norm

| f |1 5 # d m Xf d m Pf | f ( m Xf, m Pf) |

We have

| r 2 r n|1 5 # d m Xf d m Pf | # dxf dyf1 . . . yfn( | ^ xf, m Xf, m Pf, yf1, . . . , yfn | c

^ f ap & | 2 2 | ^ xf, m Xf, m Pf, yf1, . . . , yfn | c n ^ f ap & | 2) |

# | | c ^ f ap & 2 | c n ^ f ap & |(| | c ^ f ap & | 1 | | c ^ f ap & |)

® 0
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We see from this that r n ® r in the topology of +1. We may therefore use

the Riesz±Fisher theorem (Reed and Simon, 1975, Vol. 1) to deduce that it

contains a subsequence r nr such that

r ( m Xf, m Pf) 5 lim
r ® `

( r nr( m Xf, m Pf))

for almost all m Xf, m Pf. In view of this result, Eq. (17), and the fact that

r nr( m Xf, m Pf) 5 V l i,nr( m Xf, m Pf)

for all r and almost all m Xf, m Pf we deduce that

r ( m Xf, m Pf) 5 V l i( m Xf, m Pf)

for almost all m Xf, m Pf.

3. PREDICTIVELY OPTIMAL MEASUREMENTS

We will say that a simultaneous measurement process of the kind defined

in Appleby (1998c) is predictively optimal if the product of predictive errors

is minimized:

D efx D efp 5
"
2

(18)

In view of the commutation relation

[ e ÃXf, e ÃPf] 5 i " (19)

there is no need to impose the condition that the measurement be predictively
unbiased as a separate requirement: it is a consequence of the condition of

Eq. (18).

Equations (18) and (19) together imply

^ c ^ f ap | e Ã2Xf | c ^ f ap & ^ c ^ f ap | e Ã2Pf | c ^ f ap & 5
" 2

4

for every normalized | c & P *sy. By an argument which parallels the proof

of Lemma 1 we infer that there exists a fixed number l f such that

^ c ^ f ap | e Ã2Xf | c ^ f ap & 5
l 2

f

2

^ c ^ f ap | e Ã2Pf | c ^ f ap & 5
" 2

2 l 2
f
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for every normalized | c & P *sy. It is then straightforward to show that

dÃl f | c ^ f ap & 5 0 (20)

for all | c & P *sy, where dÃl f is the annihilation operator

dÃl f 5
1

! 2 1 1

l f

e ÃXf 1
i l f

"
e ÃPf 2

Since e ÃXf, e ÃPf are canonically conjugate, there exist kets | e Xf, m Xf, m Pf, yf1,

. . . , yfn & e which are simultaneous eigenvectors of the operators e ÃXf, m ÃXf, m ÃPf,
yÃfj, and which have the property

e ^ e Xf, m Xf, m Pf, yf1, . . . , yfn | e ÃPf | C &

5 2 i "
-

- e Xf
e ^ e Xf, m Xf, m Pf, yf1, . . . , yfn | C & (21)

for all | C & P *sy ^ *ap. In view of Eq. (20) we then have

1 1

l f

e Xf 1 l f
-

- e Xf 2 e ^ e Xf, m Xf, m Pf, yf1, . . . , yfn | c ^ f ap & 5 0

for all | c & P *sy. Solving this equation, we find

e ^ e Xf, m Xf, m Pf, yf1, . . . , yfn | c ^ f ap &

5 1 1

p l 2
f 2

1/4

exp F 2
1

2 l 2
f

e 2
Xf G F ( m Xf, m Pf, yf1, . . . , yfn) (22)

where F is an arbitrary normalised function.

There also exist kets | xf, m Xf, m Pf, yf1, . . . , yfn & x which are simultaneous

eigenvectors of the operators xÃf, m ÃXf, m ÃPf, yÃfj with the property

x ^ xf , m Xf, m Pf, yf1, . . . , yfn | pÃf | C &

5 2 i "
-

- xf
x ^ xf, m Xf, m Pf, yf1, . . . , yfn | C & (23)

for all | C & P *sy ^ *ap. In view of the defining relation e ÃXf 5 m ÃXf 2 xÃf
we must have

| xf, m Xf, m Pf, yf1, . . . , yfn & x

5 e 2 i x (xf, m Xf, m Pf,yf1,...,yfn) | m Xf 2 xf, m Xf, m Pf, yf1, . . . , yf & e (24)

where exp[i x (xf, m Xf, m Pf, yf1, . . . , yfn)] is a phase. In view of Eqs. (21) and

(23) we must then have
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x ^ xf, m Xf, m Pf, yf1, . . . , yfn | pÃf | C &

5 2 i "
-

- xf

(ei x (xf, m Xf, m Pf,yf1,...,yfn)
e ^ m Xf 2 xf, m Xf, m Pf, yf1, . . . , yfn | C & )

and

x ^ xf , m Xf, m Pf, yf1, . . . , yfn | pÃf | C &

5 ei x (xf, m Xf, m Pf,yf1,...,yfn)
e ^ m Xf 2 xf , m xf, m Pf, yf1,. . . , yfn | m ÃPf 2 e ÃPf | C &

5 ei x (xf, m Xf, m Pf,yf1,...,yfn)

3 1 m Pf 1 i "
-

- e ÃXf 2 e ^ e ÃXf, m Xf, m Pf, yf1, . . . , yfn | C & | e ÃXf 5 m Xf 2 xf

for all | C & P *sy ^ *ap. Hence

"
-

- xf

x (xf , m Xf, m Pf, yf1, . . . , yfn) 5 m Pf

which implies

x (xf , m Xf, m Pf , yf1, . . . , yfn) 5
1

"
m Pf xf 1 x 0( m Xf, m Pf, yf1, . . . , yfn)

where x 0 is an arbitrary function. Using this result and Eq. (24) in Eq. (22),

we deduce that the final-state wave function can be written

x ^ xf , m Xf, m Pf, yf1, . . . , yfn | c ^ f ap &

5 1 1

p l 2
f 2

1/4

exp F 2
1

2 l 2
f

( m Xf 2 xf)
2 1

i

"
m Pf xf 1 i x 0( m Xf, m Pf, yf1, . . . , yfn) G

3 F ( m Xf, m Pf, yf1, . . . , yfn)

In terms of the state | ( m Xf, m Pf) l f & defined in Eq. (9) this becomes

x ^ xf , m Xf, m Pf, yf1, . . . , yfn | c ^ f ap &

5 ^ xf | ( m Xf, m Pf) l f & F 8( m Xf, m Pf, yf1, . . . , yfn)
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where

F 8( m Xf, m Pf, yf1, . . . , yfn)

5 exp F i x 0( m Xf, m Pf, yf1, . . . , yfn) 1
i

2 "
m Pf m Xf G

3 F ( m Xf, m Pf, yf1, . . . , yfn)

The distribution of measured values r ( m Xf, m Pf ) can be written in terms of F 8:

r ( m Xf, m Pf) 5 # dyf1 . . . yfn | F 8( m Xf, m Pf, yf1, . . . , yfn) | 2

Suppose, now, that the pointer positions are found to be in the region 5 #
R 2. Let r Ãsy be the reduced density matrix describing the state of the system
immediately afterward. Then

^ xf1 | r Ãsy | xf2 & 5
1

p5 # 5 3 R n
d m Xf d m Pf dyf1 . . . dyfn | F 8( m Xf, m Pf, yf1, . . . , yfn) | 2

3 ^ xf1 | ( m Xf, m Pf) l f & ^ ( m Xf, m Pf) l f | xf2 &

where p5 is the probability of finding ( m Xf, m Pf ) P 5:

p5 5 # 5

d m Xf d m Pf r ( m Xf, m Pf)

Hence

r Ãsy 5
1

p5 # 5

d m Xf d m Pf r ( m Xf, m Pf) | ( m Xf, m Pf) l f & ^ ( m Xf, m Pf) l f |

On the other hand,

r Ãsy 5 # d m Xf d m Pf P l f( m Xf, m Pf) | ( m Xf, m Pf) l f & ^ ( m Xf, m Pf) l f |

where P l f is the anti-Husimi function, or P-function (Glauber, 1963; Sudars-
han, 1963; Hillery et al., 1984; Lee, 1995; Leonhardt, 1997) describing the

final state of the system. Comparing these expressions, we see that

P l f( m Xf, m Pf) 5 H (1/p5) r ( m Xf, m Pf) if ( m Xf, m Pf) P 5

0 otherwise
(25)

If 5 is a sufficiently small region centered on the point ( m Xf, m Pf ), the system

is approximately in the state | ( m Xf, m Pf) l f & after the measurement:
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r Ãsy ’ | ( m Xf, m Pf) l f & ^ ( m Xf, m Pf) l f |

Equation (25) shows that the effect of a predictively optimal measure-
ment process is to leave the system in a state for which P l f is a probability

density function. Such states are, of course, exceptional. In many cases,

P l f is not even defined as a tempered distribution (Hillery et al., 1984; Lee,

1995; Leonhardt, 1997).

4. THE INTERPRETATION OF THE HUSIMI FUNCTION

The result proved in Section 2 shows that there is a certain analogy

between the Husimi function and the x-space probability density function

| ^ x | c & | 2. To see this, let us examine just what is meant by the statement that

| ^ x | c & | 2 d x represents the probability of finding the position to lie in the
interval (x, x 1 d x).

Consider a measurement of x only. For the sake of simplicity suppose

that the measuring apparatus has only one degree of freedom, corresponding

to the single pointer observable m ÃX (the argument which follows does not

depend on this assumption, however). Let | c & and | f ap & be the initial states

of the system and apparatus, respectively, and let UÃbe the unitary evolution
operator describing the measurement interaction. Let xÃi 5 xÃand m ÃXf 5 UÃ² m XfUÃ

be the Heisenberg-picture operators describing the initial position of the

system and final position of the pointer, respectively. Let e ÃXi 5 m ÃXf 2 xÃi be

the retrodictive error operator.

The final-state wave function can be written (in the SchroÈ dinger picture)

^ x, m X | UÃ| c ^ f ap & 5 # dx8 K(x, m X; x8) ^ x8 | c &

for some kernel K. The probability distribution describing the result of the

measurement then takes the form

r ( m X) 5 # dx | # dx8 K(x, m X; x8) ^ x8 | c & | 2 (26)

After a certain amount of algebra one also finds

^ c ^ f ap | e Ã2Xi | c ^ f ap & 5 # dx d m X | # dx8 ( m X 2 x8) K(x, m X; x8) ^ x8 | c & | 2

(27)

Suppose that D eix 5 0. Then we see from Eq. (27) that K must take the form

K(x, m X; x8) 5 f(x, m X) d ( m X 2 x8)
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for some function f. The unitarity of UÃmeans that f must satisfy

# dx | f (x, m X) | 2 5 1

Using these results in Eq. (26), we find

r ( m X) 5 | ^ m X | c & | 2

whenever the measurement is perfectly accurate for the purposes of
retrodiction.

Suppose, on the other hand, that D eix . 0. Then r ( m X) will not generally

coincide with the function | ^ m X | c & | 2. If D eix is small compared with the

de Broglie wavelength, then we see from Eqs. (26) and (27) that r ( m X)

’ | ^ m X | c & | 2. Otherwise, we do not expect the two functions even to be

approximately equal.
Although one may possibly approach, one does not expect actually to

achieve the limit of perfect accuracy. It follows that one does not expect

the function | ^ m X | c & | 2 to describe the outcome of any practically realizable

measurement of position.

This being so, what, exactly, is the significance of the function | ^ m X | c & | 2?
In the first place, it serves as a standard of comparison against which the

outcome of experimentally realizable measurements can be judged, in the

sense that the better the measurement, the more closely does the function

| ^ m X | c & | 2 approximate the distribution of actual results.

In the second place, we see from Eq. (26) that the outcome of a real

measurement of position depends, not only on the state of the system, via
the function ^ x8 | c & , but also on the details of the measurement process, via

the function K(x, m X; x8). In the limit of perfect retrodictive accuracy, however,

the dependence on the apparatus (as represented by the kernel K ) disappears,

and the distribution of results is determined solely by the state of the system

(as represented by the vector | c & ). | ^ m X | c & | 2 does, so to speak, represent the

intrinsic distribution of position, independent of any properties specific to
the particular measuring instrument employed. In a real measurement, by

contrast, the outcome is (in a manner of speaking) contaminated by instrumen-

tal contributions, which one may try to reduce, but can never entirely

eliminate.

One typically regards the function | ^ m X | c & | 2 simply, and without qualifi-

cation, as the x-space probability distribution. It owes this canonical status
to the two features just mentioned. The result proved in Section 2 shows that

the Husimi function has analogous features. It describes the outcome of those

measurements which are retrodictively optimal, or ª best.º It is otherwise

independent of the details of the particular process considered. It might
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therefore be regarded as the canonical probability distribution for position

and momentum.

In classical mechanics one has the concept of the ª actualº distribution
describing an ensemble of identically prepared systems. Quantum mechanics

contains no precise analogue for this concept [unless one adopts a ª hidden-

variablesº interpretation, as discussed by Bohm and Hiley (1993) or Holland

(1993), for example]. Nevertheless, the result proved in Section 2 shows that

there are certain resemblances between the Husimi function and the classical

distribution. The Husimi function is clearly not the same as the classical
distribution. However, one might reasonably argue that it is the closest that

quantum mechanics allows us to get to the concept of a ª realº or ª objectiveº

phase space probability distribution.

APPENDIX. PROOF OF EQUATION (16)

Rather than working in terms of the functions r , Q l i it will be convenient,

instead, to work in terms of the measures

d m r 5 r ( m Xf, m Pf) d m Xf d m Pf

d m Q 5 Q l i( m Xf, m Pf) d m Xf d m Pf

We have from Eqs. (14) and (15)

# d m r | z l i |
2n 5 # d m Q | z l i |

2n 5 ^ c | aÃnl i aÃ² n
l i | c & (A1)

where z l i is the complex coordinate defined in Eq. (13). Our strategy will

be, first, to establish a bound on the rate at which these quantities grow with

increasing n, and then to use this to show that the measures m r , m Q have the

same Fourier transform.

| c & is in the subspace ^ l i. It can therefore be written

| c & 5 o
l

r 5 0
cr | r & l i

for some integer l. Hence

^ c | aÃnl i aÃ² n
l i | c & 5 o

l

r 5 0

(n 1 r)!

r!
| cr | 2 #

(n 1 l)!

l!

Let m stand for either of the measures m r , m Q. In view of the inequality just

proved, Eq. (A1), and the fact



824 Appleby

| z l i |
2n 1 1 #

1

2
( | z l i |

2n 1 | z l i |
2n 1 2)

we have

# d m | z l i |
n #

G (1±2 n 1 l 1 3/2)

G (l 1 1)

for every nonnegative integer n. Hence

o
`

n 5 0

1

n! # d m | b z l i 1 g z*l i |
n , `

for all b , g P C . It follows that the functions exp | b z l i 1 g z*l i | and

exp( b z l i 1 g z*l i) are m -integrable. We may therefore use Lebesgue’ s dominated

convergence theorem (Reed and Simon, 1975, Vol. 1) to infer

# d m r exp[ b z l i 1 g z*l i] 5 lim
N ® ` 1 o

N

n 5 0

1

n! # d m r ( b z l i 1 g z*l i)
n 2

5 lim
N ® ` 1 o

N

n 5 0

1

n! # d m Q ( b z l i 1 g z*l i)
n 2

5 # d m Q exp[ b z l i 1 g z*l i]

for all b , g P C . Consequently,

# d m r exp[i(kX m Xf 1 kP m Pf)] 5 # d m Q exp[i(kX m Xf 1 kP m Pf)]

for all kX, kP P R . Inverting the Fourier transforms, we deduce

m r 5 m Q
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